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Brief about my background

Now: Co-founder of Atbrox
Search & Mapreduce

PhD in Computer Science
http://amundtveit.info/publications/

Past: Googler for 4 years:
Cluster Infrastructure
Nordic Search (and Maps) Quality
Google News for iPhone

Details: http://no.linkedin.com/in/amundtveit
Interested in how mapreduce is used (algorithmic patterns)

http://mapreducepatterns.org
Working on projects using mapreduce in search and other large-scale problems

Passionate about search and search technology

Less known trivia:
shared office with your professor back in 2000

http://atbrox.com/about/
http://amundtveit.info/publications/
http://no.linkedin.com/in/amundtveit
http://mapreducepatterns.org


Part 1 

mapreduce



What is Mapreduce?

Mapreduce is a concept and method for typically batch-based large-
scale parallelization. It is inspired by functional programming's map() 
and reduce() functions

Nice features of mapreduce systems include:
reliably processing job even though machines die
parallization en-large, e.g. thousands of machines for terasort

Mapreduce was invented by the Google fellows below:
http://labs.google.com/papers/mapreduce.html

                   Jeff D.            Sanjay G.

http://labs.google.com/papers/mapreduce.html


Mapper

Processes one key and value pair at the time, e.g. 
word count

map(key: uri, value: text):
for word in tokenize(value)
    emit(word, 1) // found 1 occurence of word

inverted index
map(key: uri, value: text):

for word in tokenize(value)
    emit(word, key) 



Reducers

Reducers processes one key and all values that belong to it, e.
g.

word count
reduce(key: word type, value: list of 1s):

emit(key, sum(value))
inverted index

reduce(key: word type, value: list of URIs):
emit(key, value) // e.g. to a distr. hash table



Combiner

Combiner functions is the subset of reducer functions where 
reducer functions can be written as recurrence equations, e.g.
sumn+1 = sumn + xn+1 

This property happens (surprisingly) often and can be used to 
speed up mapreduce jobs (dramatically) by putting the 
combiner function as an "afterburner" on the map functions tail.

But sometimes, e.g. for advanced machine learning algorithms 
reducers are more advanced and can't be used as combiners



Shuffler - the silent leader

When the mapper emits a key, value pair - the shuffler does the 
actual work in shipping it to the reducer, the addressing is a 
function of the key, e.g. 
    chosen reducer = hash(key)%num reducers
but could basically be any routing function. 

Q. When is changing the shuffle function useful?
A. When data distributed is skewed, e.g. according to Zip's law. 
Examples of this are stop words in text (overly frequent) and 
skewness in sales numbers (where bestsellers massively 
outnumbers items in the long tail)



Part 2 

mapreduce in search



What is important in search?

1. Precision
results match query but primarily user intent

2. Recall
not missing important results 

3. Freshness
timely recall, .e.g for news

4. Responsiveness
time is money, but search latency is minus-money

5. Ease-of-use
few input widgets and intelligent query understanding

6. Safety
not providing malware or web spam



Recap: What is Search?

1. Getting data
2. Processing data
3. Indexing data
4. Searching data
5. Search Quality (maintain and improve) 
6. Ads Quality (which pays for the fun)

But:
not necessarily in that order
and with feedback loops

searching might lead to getting usage data used in 
both processing and indexing



Getting data - SizeOf(the Web)

2005 - Google and Yahoo competing with:
~20 Billion (20*109) documents in their indices

2008 - Google seeing 1 trillion (1*1012) simultaneously 
existing unique urls

 => PetaBytes (i.e. thousands of harddisks)

Bibliography:
http://www.ysearchblog.com/?p=172
http://googleblog.blogspot.com/2005/09/we-wanted-something-special-for-our.html
http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html
http://www.chato.cl/research/crawling_thesis
http://research.google.com/people/jeff/WSDM09-keynote.pdf
http://www.morganclaypool.com/doi/abs/10.2200/S00193ED1V01Y200905CAC006

http://www.ysearchblog.com/?p=172
http://googleblog.blogspot.com/2005/09/we-wanted-something-special-for-our.html
http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html
http://www.chato.cl/research/crawling_thesis
http://research.google.com/people/jeff/WSDM09-keynote.pdf
http://www.morganclaypool.com/doi/abs/10.2200/S00193ED1V01Y200905CAC006


MR+Search: Get Data - Dups I

Detect:
exact duplicates
near-duplicates
scraped/combined content

with mapreduce:

Naively O(N2) problem - compare all N documents with each 
other, but can be pruned by:

comparing only document which share substrings
compare only documents of similar size

    



MR+Search:Get data - Dups II

mapreduce job 1: 
   map(key: uri, value: text)
        create hashes (shingles) of substrings of content
        foreach hash in hashes: emit(key, hash)

  reduce(key: uri, values: list of hashes)
        size = number of hashes in values
        outputvalue = concat(key, size)
        foreach hash in hashes: emit(hash, outputvalue)

mapreduce job 2:
   map(key: hash, value: uri-numhashes)
        emit(key, value)

  reduce(key: hash, value: list of uri-numhashes)
        emit all unique pairs of uri-numhash in value
        // e.g. (uri0-4, uri1-7), (uri0-4, uri13-5), ..



MR+Search: Dups III

mapreduce job 3:
   map(key: uri-numhashes, value: uri-numhashes)
        emit(key, value)

  reduce(key: uri-numhashes, value: list of uri-numhashes)
        // e.g. values for key uri0-4 could be
        // uri1-7, uri1-7, uri13-5, uri33-7
        for each unique uri-numhash h in values
           alpha = count of h occurences in values
           doc_similarity = alpha/(key's numhashes + h's numhashes 
                     - alpha
           output_key = key's uri concatenated with h's uri
           emit(output_key, doc_similarity)

References:
http://www.cs.princeton.edu/courses/archive/spr05/cos598E/bib/Princeton.pdf
http://www.cs.uwaterloo.ca/~kmsalem/courses/CS848W10/presentations/Hani-proj.pdf
http://uwspace.uwaterloo.ca/bitstream/10012/5750/1/Khoshdel%20Nikkhoo_Hani.pdf
http://glinden.blogspot.com/2008/04/detecting-near-duplicates-in-big-data.html
http://infolab.stanford.edu/~manku/papers/07www-duplicates.ppt
http://simhash.googlecode.com/svn/trunk/paper/SimHashWithBib.pdf

http://www.cs.princeton.edu/courses/archive/spr05/cos598E/bib/Princeton.pdf
http://www.cs.uwaterloo.ca/~kmsalem/courses/CS848W10/presentations/Hani-proj.pdf
http://uwspace.uwaterloo.ca/bitstream/10012/5750/1/Khoshdel%20Nikkhoo_Hani.pdf
http://glinden.blogspot.com/2008/04/detecting-near-duplicates-in-big-data.html
http://infolab.stanford.edu/~manku/papers/07www-duplicates.ppt
http://simhash.googlecode.com/svn/trunk/paper/SimHashWithBib.pdf


MR+Search: Processing data I
E.g. a sequence of structurally similar map(reduce) steps 
where one updates a package with new fields:

Content Normalization (to text and remove boilerplate)
map(key: URI, value: rawcontent)

create new documentpackage
documentpackage.setRawContent(rawcontent)
documentpackage.setText(stripBoilerPlate(ToText(rawContent)
emit(key, documentpackage)

Entity Extraction 
map(key: URI, value: documentpackage)

names = findPersonNameEntities(documentpackage.getText())
documentpackage.setNames(names)
emit(key, documentpackage)

Sentiment Analysis 
map(key: URI, value: documentpackage)

sentimentScore = calculateSentiment(documentpackage.getText())
documentpackage.setSentimentScore(sentimentScore)
emit(key, documentpackage)



MR+Search: Processing data II
Creating a simple hypothetical ranking signal with mapreduce:
=> ratio of wovels per page

map(key: URI, value: documentpackage)
    numvowels, numnonvowels = 0
    for each character in documentpackage.getText():
         if isWowel(character)
             ++numvowels
         else
             ++numnonvowels
    vowelratio = numvowels / (numvowels+numnonvowels)
    documentpackage.setVowelRatio( vowelratio)
    emit(key, documentpackage)

         



MR+Search: Indexing data I

Inverted index among the "classics" of mapreduce 
example, it resembles word count but outputs the URI 
instead of occurence count

map(key: URI, value: text)
   for word in tokenize(value)
       emit(word, key)

reduce(key: wordtype, value: list of URIs)
   output(key, value) // e.g. to a distributed hash



MR+Search: Indexing data II

How about positional information?

map(key: URI, value: text)
   wordposition = 0
   foreach word in tokenize(value)
       outputvalue = concat(key, wordposition)
       ++wordposition
       emit(word, outputvalue)

reduce(key: wordtype, value: list of URI combined with word position)
   create positional index for the given word (key) in the format 
   output(key, newvalue) // e.g. to a distributed hash



MR+Search: Indexing data III

How about bigram or n-gram indices?

map(key: URI, value: text)
   bigramposition = 0
   foreach bigram in bigramtokenizer(value)
       outputvalue = concat(key, wordposition)
       ++bigramposition
       emit(bigram, outputvalue)

reduce(key: bigramtype, value: list of URI combined with bigram position)
   create positional bigram index for the given bigram (key) in the format 
   output(key, newvalue) // e.g. to a distributed hash



MR+Search: Indexing data IV

How about indexing of stems or synonyms?

map(key: URI, value: text)
   foreach word in tokenizer(value)

       synonyms = findSynonyms(word)
       stem = createStem(word)
       emit(word, key)
       emit(stem, key)
       foreach synonym in synonyms
          emit(synonym, key)

reduce(key: wordtype, value: list of URI)
   output(key, value) // e.g. to a distributed hash



MR+Search: Searching data I

A lot of things typically happens at search time, the query is 
"dissected", classified, interpreted and perhaps rewritten before 
querying the index. This can generate clickthrough log data 
where we can find most clicked-on uris:
mapreducejob 1
map(key: query, value: URI clicked on)
   emit(value, key)

reduce(key: URI clicked on, value: list of queries)
   
emit(count(value), key)) // (count, query)

   

mapreduce job 2
 
map(key: uri count, value: uri)
   emit(key, value)   // (count, query)

reduce(key: uri count, value: list of uris)
    emit(key, value)
 // generate list of uris per clickthrough count
    
    



MR+Search: Searching data II

Or we can find which the number of clicks per query (note: 
queries with relatively few clicks probably might have issues 
with ranking)
mapreducejob 1
map(key: query, value: URI clicked on)
   emit(value, key)

reduce(key: URI clicked on, value: list of queries)
   foreach unique query q in value // get all clicks per query for this uri
       outputvalue = count number of occurences (clicks) of q in value
       emit( q, outputvalue)
  

mapreduce job 2
 
map(key: query, value: count)
   outputvalue = sum(value) 
   emit(key, value)

reduce(key: query, value: list of counts)
    emit(sum(value), key)
 
// get all clickthroughs per query for all urls



MR+Search: Quality

Changing how processing and indexing mapreduce jobs work 
is likely to effect search quality (e.g. precision and recall), this 
can be evaluated with mapreduce, e.g. comparing the old and 
new set of indices by running querying both set of indices with 
the same (large) query log and compare differences in results.

Task: how will you do that with mapreduce?

    

References:
http://www.cs.northwestern.
edu/~pardo/courses/mmml/papers/collaborative_filtering/crowdsourcing_for_relev
ance_evaluation_SIGIR08.pdf

http://www.cs.northwestern.edu/~pardo/courses/mmml/papers/collaborative_filtering/crowdsourcing_for_relevance_evaluation_SIGIR08.pdf
http://www.cs.northwestern.edu/~pardo/courses/mmml/papers/collaborative_filtering/crowdsourcing_for_relevance_evaluation_SIGIR08.pdf
http://www.cs.northwestern.edu/~pardo/courses/mmml/papers/collaborative_filtering/crowdsourcing_for_relevance_evaluation_SIGIR08.pdf


MR+Search: Ads Quality

Ads are commercial search results, they should have similar 
requirements to relevancy as "organic" results, but have less 
text "to rank with" themselves (~twitter tweet size or less), but 
fortunately a lot of metadata (about advertiser, landing pages, 
keywords bid for etc.) that can be used to measure, improve 
and predict their relevancy
    

References:
http://www.wsdm-conference.org/2010/proceedings/docs/p361.pdf
http://web2py.iiit.ac.in/publications/default/download/techreport.pdf.a373bbf4a5b76063.
4164436c69636b5468726f7567685261746549494954485265706f72742e706466.pdf
http://pages.stern.nyu.edu/~narchak/wfp0828-archak.pdf
http://research.yahoo.com/files/cikm2008-search%20advertising.pdf 

 

http://www.wsdm-conference.org/2010/proceedings/docs/p361.pdf
http://web2py.iiit.ac.in/publications/default/download/techreport.pdf.a373bbf4a5b76063.4164436c69636b5468726f7567685261746549494954485265706f72742e706466.pdf
http://web2py.iiit.ac.in/publications/default/download/techreport.pdf.a373bbf4a5b76063.4164436c69636b5468726f7567685261746549494954485265706f72742e706466.pdf
http://pages.stern.nyu.edu/~narchak/wfp0828-archak.pdf
http://research.yahoo.com/files/cikm2008-search%20advertising.pdf 


MR+Search: Other Topics

Plenty of mapreduce+search related topics haven't been 
covered, but here are some to consider looking at:

machine translation
clustering 
graph algorithms
spam/malware detection
personalization

References:
http://www.google.com/research/pubs/och.html
http://www.usenix.org/event/hotbots07/tech/full_papers/provos/provos.pdf 
https://cwiki.apache.org/confluence/display/MAHOUT/Algorithms
http://code.google.com/edu/submissions/mapreduce-minilecture/listing.html

 http://www.youtube.com/watch?v=1ZDybXl212Q (clustering)
 http://www.youtube.com/watch?v=BT-piFBP4fE (graphs)

http://www.google.com/research/pubs/och.html
http://www.usenix.org/event/hotbots07/tech/full_papers/provos/provos.pdf
https://cwiki.apache.org/confluence/display/MAHOUT/Algorithms
http://code.google.com/edu/submissions/mapreduce-minilecture/listing.html
http://www.youtube.com/watch?v=1ZDybXl212Q
http://www.youtube.com/watch?v=BT-piFBP4fE


Part 3 

advanced mapreduce example



Adv. Mapreduce Example I

This gives an example of how to port a machine learning 
classifier to mapreduce with discussion about optimizations

The Classifier: Tikhonov Regularization with a square loss 
function (this family includes: proximal support vector 
machines, ridge regression, shrinkage regression and 
regularized least-squares classification)
(omega, gamma) = (I/mu + ET*E)-1*(ET*D*e)    

D - a matrix of training classes, e.g. [[-1.0, 1.0, 1.0, .. ]]
A - a matrix with feature vectors, e.g. [[2.9, 3.3, 11.1, 2.4], .. ]
e - a vector filled with ones, e.g [1.0, 1.0, .., 1.0]
E = [A -e]
mu = scalar constant # used to tune classifier
D - a diagonal matrix with -1.0 or +1.0 values (depending on the class) 



Adv. Mapreduce Example II

How to classify an incoming feature vector x
class = xT*omega - gamma

The classifier expression in Python (numerical python):
(omega, gamma) = (I/mu + E.T*E).I*(E.T*D*e)  

The expression have a (nice) additive property such that:
(omega, gamma) = (I/mu + E_1.T*E_1 + E_2.T*E_2).I*(E_1.T*D_1*e + E_2.T*D_2*e)

With induction this becomes:
(omega, gamma) = (I/mu + E_1.T*E_1 + .. + E_i.T*E_i).I*
(E_1.T*D_1*e + .. + E_i.T*D_i*e)



Adv. Mapreduce Example III

Brief Recap
D - a matrix of training classes, e.g. 
[[-1.0, 1.0, 1.0, .. ]]
A - a matrix with feature vectors, e.g. 
[[2.9, 3.3, 11.1, 2.4], .. ]
e - a vector filled with ones, e.g [1.0, 1.0, .., 1.0]
E = [A -e]
mu = scalar constant # used to tune classifier

A and D represent distributed training data, e.g. spread out 
on many machines or on distributed file system. Given the 
additive nature of the expression we can parallelize the 
calculation of E.T*E and E.T*De



Adv. Mapreduce Example IV



Adv. Mapreduce Example V 

def map(key, value):
   # input key= class for one training example, e.g. "-1.0"
   classes = [float(item) for item in key.split(",")]   # e.g. [-1.0]
   D = numpy.diag(classes)
 
   # input value = feature vector for one training example, e.g. "3.0, 7.0, 2.0"
   featurematrix = [float(item) for item in value.split(",")]
   A = numpy.matrix(featurematrix)
 
   # create matrix E and vector e
   e = numpy.matrix(numpy.ones(len(A)).reshape(len(A),1))
   E = numpy.matrix(numpy.append(A,-e,axis=1)) 
 
   # create a tuple with the values to be used by reducer
   # and encode it with base64 to avoid potential trouble with '\t' and '\n' used
   # as default separators in Hadoop Streaming
   producedvalue = base64.b64encode(pickle.dumps( (E.T*E, E.T*D*e) )    
 
   # note: a single constant key "producedkey" sends to only one reducer
   # somewhat "atypical" due to low degree of parallism on reducer side
   print "producedkey\t%s" % (producedvalue)



Adv. Mapreduce Example VI 

def reduce(key, values, mu=0.1):
  sumETE = None
  sumETDe = None
 
  # key isn't used, so ignoring it with _ (underscore).
  for _, value in values:
    # unpickle values
    ETE, ETDe = pickle.loads(base64.b64decode(value))
    if sumETE == None:
      # create the I/mu with correct dimensions
      sumETE = numpy.matrix(numpy.eye(ETE.shape[1])/mu)
    sumETE += ETE
 
    if sumETDe == None:
      # create sumETDe with correct dimensions
      sumETDe = ETDe
    else:
      sumETDe += ETDe
 
    # note: omega = result[:-1] and gamma = result[-1]
    # but printing entire vector as output
    result = sumETE.I*sumETDe
    print "%s\t%s" % (key, str(result.tolist()))



Adv. Mapreduce Example VII

Mapper Increment Size really makes a difference

E.T*E and E.T*D*e given to reducer are independent of number of training data(!)
==> put as much training data in each E.T*E and E.T*D*e package 

Example:
Assume 1000 mappers with 1 billion training examples each (web scale :) and 100 features per 
training example
If putting all billion examples into one E.T*E and E.T*D*e package

reducer needs to summarize 1000 101x101 matrices (not bad)
Or if sending 1 example per E.T*E and E.T*D*e package

reducer needs to summarize 1 trillion (10^12) 101x101 matrices (intractable)



Adv. Mapreduce Example VIII
Avoid stressing the reducer



Part 4 

landing



Mapreduce Patterns

Map() and Reduce() methods typically follow patterns, a 
recommended way of grouping code with such patterns is:

extracting and generalize fingerprints based on:
loops: e.g "do-while", "while", "for", "repeat-until" => "loop"
conditions: e.g. "if" and "switch" => "condition"
emits
emit data types (if available)

the map() method for both word count and index would be:
map(key, value)
  loop
      emit(key:string, value:string)



How to start with mapreduce?

Either download hadoop (comes with mapreduce):
http://hadoop.apache.org/common/releases.html
http://www.cloudera.com/downloads/
http://hadoop.apache.org/common/docs/r0.20.2/mapred_tutorial.html

Or use Amazon Elastic Mapreduce (cloud service):
http://aws.amazon.com/elasticmapreduce/
http://docs.amazonwebservices.com/ElasticMapReduce/latest/GettingStartedGuide/

 

http://hadoop.apache.org/common/releases.html
http://www.cloudera.com/downloads/
http://hadoop.apache.org/common/docs/r0.20.2/mapred_tutorial.html
http://aws.amazon.com/elasticmapreduce/
http://docs.amazonwebservices.com/ElasticMapReduce/latest/GettingStartedGuide/


Summary
Have given a brief introduction to:

mapreduce
mapreduce in search
in-depth mapreduce example (classification)

Any questions, Comments?
Further reading:

http://mapreducepatterns.org
algorithms with mapreduce

http://atbrox.com/about/
misc. mapreduce blog posts (by me)

Wanting to work with mapreduce?
amund@atbrox.com

http://mapreducepatterns.org
http://atbrox.com/about/

