

Mapreduce and (in) Search

Amund Tveit (PhD)

amund@atbrox.com
http://atbrox.com

http://atbrox.com

TOC

1. Brief about my background
2. Mapreduce Overview
3. Mapreduce in Search
4. Advanced Mapreduce Example

Brief about my background

Now: Co-founder of Atbrox
Search & Mapreduce

PhD in Computer Science
http://amundtveit.info/publications/

Past: Googler for 4 years:
Cluster Infrastructure
Nordic Search (and Maps) Quality
Google News for iPhone

Details: http://no.linkedin.com/in/amundtveit
Interested in how mapreduce is used (algorithmic patterns)

http://mapreducepatterns.org
Working on projects using mapreduce in search and other large-scale problems

Passionate about search and search technology

Less known trivia:
shared office with your professor back in 2000

http://atbrox.com/about/
http://amundtveit.info/publications/
http://no.linkedin.com/in/amundtveit
http://mapreducepatterns.org

Part 1

mapreduce

What is Mapreduce?

Mapreduce is a concept and method for typically batch-based large-
scale parallelization. It is inspired by functional programming's map()
and reduce() functions

Nice features of mapreduce systems include:
reliably processing job even though machines die
parallization en-large, e.g. thousands of machines for terasort

Mapreduce was invented by the Google fellows below:
http://labs.google.com/papers/mapreduce.html

 Jeff D. Sanjay G.

http://labs.google.com/papers/mapreduce.html

Mapper

Processes one key and value pair at the time, e.g.
word count

map(key: uri, value: text):
for word in tokenize(value)
 emit(word, 1) // found 1 occurence of word

inverted index
map(key: uri, value: text):

for word in tokenize(value)
 emit(word, key)

Reducers

Reducers processes one key and all values that belong to it, e.
g.

word count
reduce(key: word type, value: list of 1s):

emit(key, sum(value))
inverted index

reduce(key: word type, value: list of URIs):
emit(key, value) // e.g. to a distr. hash table

Combiner

Combiner functions is the subset of reducer functions where
reducer functions can be written as recurrence equations, e.g.
sumn+1 = sumn + xn+1

This property happens (surprisingly) often and can be used to
speed up mapreduce jobs (dramatically) by putting the
combiner function as an "afterburner" on the map functions tail.

But sometimes, e.g. for advanced machine learning algorithms
reducers are more advanced and can't be used as combiners

Shuffler - the silent leader

When the mapper emits a key, value pair - the shuffler does the
actual work in shipping it to the reducer, the addressing is a
function of the key, e.g.
 chosen reducer = hash(key)%num reducers
but could basically be any routing function.

Q. When is changing the shuffle function useful?
A. When data distributed is skewed, e.g. according to Zip's law.
Examples of this are stop words in text (overly frequent) and
skewness in sales numbers (where bestsellers massively
outnumbers items in the long tail)

Part 2

mapreduce in search

What is important in search?

1. Precision
results match query but primarily user intent

2. Recall
not missing important results

3. Freshness
timely recall, .e.g for news

4. Responsiveness
time is money, but search latency is minus-money

5. Ease-of-use
few input widgets and intelligent query understanding

6. Safety
not providing malware or web spam

Recap: What is Search?

1. Getting data
2. Processing data
3. Indexing data
4. Searching data
5. Search Quality (maintain and improve)
6. Ads Quality (which pays for the fun)

But:
not necessarily in that order
and with feedback loops

searching might lead to getting usage data used in
both processing and indexing

Getting data - SizeOf(the Web)

2005 - Google and Yahoo competing with:
~20 Billion (20*109) documents in their indices

2008 - Google seeing 1 trillion (1*1012) simultaneously
existing unique urls

 => PetaBytes (i.e. thousands of harddisks)

Bibliography:
http://www.ysearchblog.com/?p=172
http://googleblog.blogspot.com/2005/09/we-wanted-something-special-for-our.html
http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html
http://www.chato.cl/research/crawling_thesis
http://research.google.com/people/jeff/WSDM09-keynote.pdf
http://www.morganclaypool.com/doi/abs/10.2200/S00193ED1V01Y200905CAC006

http://www.ysearchblog.com/?p=172
http://googleblog.blogspot.com/2005/09/we-wanted-something-special-for-our.html
http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html
http://www.chato.cl/research/crawling_thesis
http://research.google.com/people/jeff/WSDM09-keynote.pdf
http://www.morganclaypool.com/doi/abs/10.2200/S00193ED1V01Y200905CAC006

MR+Search: Get Data - Dups I

Detect:
exact duplicates
near-duplicates
scraped/combined content

with mapreduce:

Naively O(N2) problem - compare all N documents with each
other, but can be pruned by:

comparing only document which share substrings
compare only documents of similar size

MR+Search:Get data - Dups II

mapreduce job 1:
 map(key: uri, value: text)
 create hashes (shingles) of substrings of content
 foreach hash in hashes: emit(key, hash)

 reduce(key: uri, values: list of hashes)
 size = number of hashes in values
 outputvalue = concat(key, size)
 foreach hash in hashes: emit(hash, outputvalue)

mapreduce job 2:
 map(key: hash, value: uri-numhashes)
 emit(key, value)

 reduce(key: hash, value: list of uri-numhashes)
 emit all unique pairs of uri-numhash in value
 // e.g. (uri0-4, uri1-7), (uri0-4, uri13-5), ..

MR+Search: Dups III

mapreduce job 3:
 map(key: uri-numhashes, value: uri-numhashes)
 emit(key, value)

 reduce(key: uri-numhashes, value: list of uri-numhashes)
 // e.g. values for key uri0-4 could be
 // uri1-7, uri1-7, uri13-5, uri33-7
 for each unique uri-numhash h in values
 alpha = count of h occurences in values
 doc_similarity = alpha/(key's numhashes + h's numhashes
 - alpha
 output_key = key's uri concatenated with h's uri
 emit(output_key, doc_similarity)

References:
http://www.cs.princeton.edu/courses/archive/spr05/cos598E/bib/Princeton.pdf
http://www.cs.uwaterloo.ca/~kmsalem/courses/CS848W10/presentations/Hani-proj.pdf
http://uwspace.uwaterloo.ca/bitstream/10012/5750/1/Khoshdel%20Nikkhoo_Hani.pdf
http://glinden.blogspot.com/2008/04/detecting-near-duplicates-in-big-data.html
http://infolab.stanford.edu/~manku/papers/07www-duplicates.ppt
http://simhash.googlecode.com/svn/trunk/paper/SimHashWithBib.pdf

http://www.cs.princeton.edu/courses/archive/spr05/cos598E/bib/Princeton.pdf
http://www.cs.uwaterloo.ca/~kmsalem/courses/CS848W10/presentations/Hani-proj.pdf
http://uwspace.uwaterloo.ca/bitstream/10012/5750/1/Khoshdel%20Nikkhoo_Hani.pdf
http://glinden.blogspot.com/2008/04/detecting-near-duplicates-in-big-data.html
http://infolab.stanford.edu/~manku/papers/07www-duplicates.ppt
http://simhash.googlecode.com/svn/trunk/paper/SimHashWithBib.pdf

MR+Search: Processing data I
E.g. a sequence of structurally similar map(reduce) steps
where one updates a package with new fields:

Content Normalization (to text and remove boilerplate)
map(key: URI, value: rawcontent)

create new documentpackage
documentpackage.setRawContent(rawcontent)
documentpackage.setText(stripBoilerPlate(ToText(rawContent)
emit(key, documentpackage)

Entity Extraction
map(key: URI, value: documentpackage)

names = findPersonNameEntities(documentpackage.getText())
documentpackage.setNames(names)
emit(key, documentpackage)

Sentiment Analysis
map(key: URI, value: documentpackage)

sentimentScore = calculateSentiment(documentpackage.getText())
documentpackage.setSentimentScore(sentimentScore)
emit(key, documentpackage)

MR+Search: Processing data II
Creating a simple hypothetical ranking signal with mapreduce:
=> ratio of wovels per page

map(key: URI, value: documentpackage)
 numvowels, numnonvowels = 0
 for each character in documentpackage.getText():
 if isWowel(character)
 ++numvowels
 else
 ++numnonvowels
 vowelratio = numvowels / (numvowels+numnonvowels)
 documentpackage.setVowelRatio(vowelratio)
 emit(key, documentpackage)

MR+Search: Indexing data I

Inverted index among the "classics" of mapreduce
example, it resembles word count but outputs the URI
instead of occurence count

map(key: URI, value: text)
 for word in tokenize(value)
 emit(word, key)

reduce(key: wordtype, value: list of URIs)
 output(key, value) // e.g. to a distributed hash

MR+Search: Indexing data II

How about positional information?

map(key: URI, value: text)
 wordposition = 0
 foreach word in tokenize(value)
 outputvalue = concat(key, wordposition)
 ++wordposition
 emit(word, outputvalue)

reduce(key: wordtype, value: list of URI combined with word position)
 create positional index for the given word (key) in the format
 output(key, newvalue) // e.g. to a distributed hash

MR+Search: Indexing data III

How about bigram or n-gram indices?

map(key: URI, value: text)
 bigramposition = 0
 foreach bigram in bigramtokenizer(value)
 outputvalue = concat(key, wordposition)
 ++bigramposition
 emit(bigram, outputvalue)

reduce(key: bigramtype, value: list of URI combined with bigram position)
 create positional bigram index for the given bigram (key) in the format
 output(key, newvalue) // e.g. to a distributed hash

MR+Search: Indexing data IV

How about indexing of stems or synonyms?

map(key: URI, value: text)
 foreach word in tokenizer(value)

 synonyms = findSynonyms(word)
 stem = createStem(word)
 emit(word, key)
 emit(stem, key)
 foreach synonym in synonyms
 emit(synonym, key)

reduce(key: wordtype, value: list of URI)
 output(key, value) // e.g. to a distributed hash

MR+Search: Searching data I

A lot of things typically happens at search time, the query is
"dissected", classified, interpreted and perhaps rewritten before
querying the index. This can generate clickthrough log data
where we can find most clicked-on uris:
mapreducejob 1
map(key: query, value: URI clicked on)
 emit(value, key)

reduce(key: URI clicked on, value: list of queries)

emit(count(value), key)) // (count, query)

mapreduce job 2

map(key: uri count, value: uri)
 emit(key, value) // (count, query)

reduce(key: uri count, value: list of uris)
 emit(key, value)
 // generate list of uris per clickthrough count

MR+Search: Searching data II

Or we can find which the number of clicks per query (note:
queries with relatively few clicks probably might have issues
with ranking)
mapreducejob 1
map(key: query, value: URI clicked on)
 emit(value, key)

reduce(key: URI clicked on, value: list of queries)
 foreach unique query q in value // get all clicks per query for this uri
 outputvalue = count number of occurences (clicks) of q in value
 emit(q, outputvalue)

mapreduce job 2

map(key: query, value: count)
 outputvalue = sum(value)
 emit(key, value)

reduce(key: query, value: list of counts)
 emit(sum(value), key)

// get all clickthroughs per query for all urls

MR+Search: Quality

Changing how processing and indexing mapreduce jobs work
is likely to effect search quality (e.g. precision and recall), this
can be evaluated with mapreduce, e.g. comparing the old and
new set of indices by running querying both set of indices with
the same (large) query log and compare differences in results.

Task: how will you do that with mapreduce?

References:
http://www.cs.northwestern.
edu/~pardo/courses/mmml/papers/collaborative_filtering/crowdsourcing_for_relev
ance_evaluation_SIGIR08.pdf

http://www.cs.northwestern.edu/~pardo/courses/mmml/papers/collaborative_filtering/crowdsourcing_for_relevance_evaluation_SIGIR08.pdf
http://www.cs.northwestern.edu/~pardo/courses/mmml/papers/collaborative_filtering/crowdsourcing_for_relevance_evaluation_SIGIR08.pdf
http://www.cs.northwestern.edu/~pardo/courses/mmml/papers/collaborative_filtering/crowdsourcing_for_relevance_evaluation_SIGIR08.pdf

MR+Search: Ads Quality

Ads are commercial search results, they should have similar
requirements to relevancy as "organic" results, but have less
text "to rank with" themselves (~twitter tweet size or less), but
fortunately a lot of metadata (about advertiser, landing pages,
keywords bid for etc.) that can be used to measure, improve
and predict their relevancy

References:
http://www.wsdm-conference.org/2010/proceedings/docs/p361.pdf
http://web2py.iiit.ac.in/publications/default/download/techreport.pdf.a373bbf4a5b76063.
4164436c69636b5468726f7567685261746549494954485265706f72742e706466.pdf
http://pages.stern.nyu.edu/~narchak/wfp0828-archak.pdf
http://research.yahoo.com/files/cikm2008-search%20advertising.pdf

http://www.wsdm-conference.org/2010/proceedings/docs/p361.pdf
http://web2py.iiit.ac.in/publications/default/download/techreport.pdf.a373bbf4a5b76063.4164436c69636b5468726f7567685261746549494954485265706f72742e706466.pdf
http://web2py.iiit.ac.in/publications/default/download/techreport.pdf.a373bbf4a5b76063.4164436c69636b5468726f7567685261746549494954485265706f72742e706466.pdf
http://pages.stern.nyu.edu/~narchak/wfp0828-archak.pdf
http://research.yahoo.com/files/cikm2008-search%20advertising.pdf

MR+Search: Other Topics

Plenty of mapreduce+search related topics haven't been
covered, but here are some to consider looking at:

machine translation
clustering
graph algorithms
spam/malware detection
personalization

References:
http://www.google.com/research/pubs/och.html
http://www.usenix.org/event/hotbots07/tech/full_papers/provos/provos.pdf
https://cwiki.apache.org/confluence/display/MAHOUT/Algorithms
http://code.google.com/edu/submissions/mapreduce-minilecture/listing.html

 http://www.youtube.com/watch?v=1ZDybXl212Q (clustering)
 http://www.youtube.com/watch?v=BT-piFBP4fE (graphs)

http://www.google.com/research/pubs/och.html
http://www.usenix.org/event/hotbots07/tech/full_papers/provos/provos.pdf
https://cwiki.apache.org/confluence/display/MAHOUT/Algorithms
http://code.google.com/edu/submissions/mapreduce-minilecture/listing.html
http://www.youtube.com/watch?v=1ZDybXl212Q
http://www.youtube.com/watch?v=BT-piFBP4fE

Part 3

advanced mapreduce example

Adv. Mapreduce Example I

This gives an example of how to port a machine learning
classifier to mapreduce with discussion about optimizations

The Classifier: Tikhonov Regularization with a square loss
function (this family includes: proximal support vector
machines, ridge regression, shrinkage regression and
regularized least-squares classification)
(omega, gamma) = (I/mu + ET*E)-1*(ET*D*e)

D - a matrix of training classes, e.g. [[-1.0, 1.0, 1.0, ..]]
A - a matrix with feature vectors, e.g. [[2.9, 3.3, 11.1, 2.4], ..]
e - a vector filled with ones, e.g [1.0, 1.0, .., 1.0]
E = [A -e]
mu = scalar constant # used to tune classifier
D - a diagonal matrix with -1.0 or +1.0 values (depending on the class)

Adv. Mapreduce Example II

How to classify an incoming feature vector x
class = xT*omega - gamma

The classifier expression in Python (numerical python):
(omega, gamma) = (I/mu + E.T*E).I*(E.T*D*e)

The expression have a (nice) additive property such that:
(omega, gamma) = (I/mu + E_1.T*E_1 + E_2.T*E_2).I*(E_1.T*D_1*e + E_2.T*D_2*e)

With induction this becomes:
(omega, gamma) = (I/mu + E_1.T*E_1 + .. + E_i.T*E_i).I*
(E_1.T*D_1*e + .. + E_i.T*D_i*e)

Adv. Mapreduce Example III

Brief Recap
D - a matrix of training classes, e.g.
[[-1.0, 1.0, 1.0, ..]]
A - a matrix with feature vectors, e.g.
[[2.9, 3.3, 11.1, 2.4], ..]
e - a vector filled with ones, e.g [1.0, 1.0, .., 1.0]
E = [A -e]
mu = scalar constant # used to tune classifier

A and D represent distributed training data, e.g. spread out
on many machines or on distributed file system. Given the
additive nature of the expression we can parallelize the
calculation of E.T*E and E.T*De

Adv. Mapreduce Example IV

Adv. Mapreduce Example V

def map(key, value):
 # input key= class for one training example, e.g. "-1.0"
 classes = [float(item) for item in key.split(",")] # e.g. [-1.0]
 D = numpy.diag(classes)

 # input value = feature vector for one training example, e.g. "3.0, 7.0, 2.0"
 featurematrix = [float(item) for item in value.split(",")]
 A = numpy.matrix(featurematrix)

 # create matrix E and vector e
 e = numpy.matrix(numpy.ones(len(A)).reshape(len(A),1))
 E = numpy.matrix(numpy.append(A,-e,axis=1))

 # create a tuple with the values to be used by reducer
 # and encode it with base64 to avoid potential trouble with '\t' and '\n' used
 # as default separators in Hadoop Streaming
 producedvalue = base64.b64encode(pickle.dumps((E.T*E, E.T*D*e))

 # note: a single constant key "producedkey" sends to only one reducer
 # somewhat "atypical" due to low degree of parallism on reducer side
 print "producedkey\t%s" % (producedvalue)

Adv. Mapreduce Example VI

def reduce(key, values, mu=0.1):
 sumETE = None
 sumETDe = None

 # key isn't used, so ignoring it with _ (underscore).
 for _, value in values:
 # unpickle values
 ETE, ETDe = pickle.loads(base64.b64decode(value))
 if sumETE == None:
 # create the I/mu with correct dimensions
 sumETE = numpy.matrix(numpy.eye(ETE.shape[1])/mu)
 sumETE += ETE

 if sumETDe == None:
 # create sumETDe with correct dimensions
 sumETDe = ETDe
 else:
 sumETDe += ETDe

 # note: omega = result[:-1] and gamma = result[-1]
 # but printing entire vector as output
 result = sumETE.I*sumETDe
 print "%s\t%s" % (key, str(result.tolist()))

Adv. Mapreduce Example VII

Mapper Increment Size really makes a difference

E.T*E and E.T*D*e given to reducer are independent of number of training data(!)
==> put as much training data in each E.T*E and E.T*D*e package

Example:
Assume 1000 mappers with 1 billion training examples each (web scale :) and 100 features per
training example
If putting all billion examples into one E.T*E and E.T*D*e package

reducer needs to summarize 1000 101x101 matrices (not bad)
Or if sending 1 example per E.T*E and E.T*D*e package

reducer needs to summarize 1 trillion (10^12) 101x101 matrices (intractable)

Adv. Mapreduce Example VIII
Avoid stressing the reducer

Part 4

landing

Mapreduce Patterns

Map() and Reduce() methods typically follow patterns, a
recommended way of grouping code with such patterns is:

extracting and generalize fingerprints based on:
loops: e.g "do-while", "while", "for", "repeat-until" => "loop"
conditions: e.g. "if" and "switch" => "condition"
emits
emit data types (if available)

the map() method for both word count and index would be:
map(key, value)
 loop
 emit(key:string, value:string)

How to start with mapreduce?

Either download hadoop (comes with mapreduce):
http://hadoop.apache.org/common/releases.html
http://www.cloudera.com/downloads/
http://hadoop.apache.org/common/docs/r0.20.2/mapred_tutorial.html

Or use Amazon Elastic Mapreduce (cloud service):
http://aws.amazon.com/elasticmapreduce/
http://docs.amazonwebservices.com/ElasticMapReduce/latest/GettingStartedGuide/

http://hadoop.apache.org/common/releases.html
http://www.cloudera.com/downloads/
http://hadoop.apache.org/common/docs/r0.20.2/mapred_tutorial.html
http://aws.amazon.com/elasticmapreduce/
http://docs.amazonwebservices.com/ElasticMapReduce/latest/GettingStartedGuide/

Summary
Have given a brief introduction to:

mapreduce
mapreduce in search
in-depth mapreduce example (classification)

Any questions, Comments?
Further reading:

http://mapreducepatterns.org
algorithms with mapreduce

http://atbrox.com/about/
misc. mapreduce blog posts (by me)

Wanting to work with mapreduce?
amund@atbrox.com

http://mapreducepatterns.org
http://atbrox.com/about/

