Oct 03

Other recommended writeups :

Location: Roosevelt Hotel, NYC

1235 Joe Cunningham – Visa – Large scale transaction analysis
– responsible for Visa Technology Strategy and Innovation
been playing with Hadoop for 9 months
probably many in audience learning and starting out with Hadoop

Agenda:
1) VisaNet overview
2) Value-added information products
3) Hadoop@Visa – research results

About Visa:
- 60 Billion market cap
- well-known card products, and also behind the scene information products
- Visa brand has high trust
- For a card-holder a Visa-card means global acceptance
- For a shopowner, if you get a Visa payment aproval you will be payed

VisaNet
VisaNet is the largest, most advanced payment network in the world
characteristics:
28M locations,
130M authorizations/day,
1500 endpoints,
Processes transactions faster than 1s
1.4M ATMs,
Processes in 175 currencies,
Less than 2s unavailability per year (!)
- according to my calculations six 9s (0.999999366)
16300 financial institutions

Visa Processing Architecture
Security/Access Services -> Message|File|Web
VisaNet Services Integration -> Authorization|Clearing&Settlement
Dispute handling, Risk, Information
Scoring every transaction (used for issuer to approve/decline transaction)

Value added Info products
- Info services
Client: Portfolio Analysis, Visa Incentive Network
Accountholder: transaction alerts, accoutnt updater, tailored rewards
- Risk management services
Account monitoring
Authentication
Encyption

Hadoop@Visa
Run a pipeline of prototypes in lab facility in SF
Any technology taken into Visa needs to match scalability and reliability requirements

Research Lab Setup
- VM System:
Custom Analytic Stacks
Encryption Processing
Relational Database
- Hadoop Systems
Management Stack
Hadoop #1 ~40TB / 42 nodes (2 years of raw transaction data)
Hadoop #2 ~300TB / 28 nodes

Risk Product Use Case
Create critical data model elements, such as keys and transaction statistics, which feed our real-time risk-scoring systems
Input: Transactions – Merchant Category, Country/Zip
Output: Key & Statistics – MCCZIP Key – stats related to account, trans. type, approval, fraud, IP address etc.
Research Sample: 500M distinct accounts, 100M transactions per day, 200 bytes per transaction, 2 years – 73B transaction (36TB)
Processing time from 1 month to 13 minutes! (note: ~3000 times faster)
(Generate synthetic transactions used to test the model)

Financial Enterprise Fit
- key questions under research:
- what will the Hadoop Solution Stack(s) look like?
- File system, Transaction Sample System, Relational Back-end (integration path), Analytics Processing
- Internal vs external cloud
- How do I get data into a cloud in a secure way.
- How does HSM and security integration work in Hadoop
- What are the missing pieces?

Why Hadoop@Visa?
- analyze volumes of data with response that are not possible today
- requirement: need to fit with existing solutions

Cross Data Center Log Processing – Stu Hood, Rackspace

(Email and apps division, work on search team)

Agenda
Use Case Backgound
- “Rackapps” – Hybrid Mail Hosting, 40% use a mix of exchange and rackspace mail

Use Case: Log Types

Use Case: Querying
- was the mail delivered?
- spam – why was it (not) marked as spam
- access – who checked/failed to check mail?
more advanced questions:
- which delivery routes have the highest latency?
- which are the spammiest IP?
- Where in the world do customers log in from
Elsewhere:
- billing

Previous Solutions
- 1999-2006 – go to where log files are generated, querying with grep
- 2006-2007 / bulk load to MySQL – worked for a year

Hadoop Solution
- V3 – lucene indexes in Hadoop
- 2007- present
- store 7 days uncompressed
- queries take seconds
- long term queries with mapreduce (6M avail for MR queries)
- all 3 datacenters

Alternatives considered:
- Splunk – good for realtime, but not great for archiving
- Data warehouse package – not realtime, but fantastic for longterm analysis
- Partioned MySQL – half-baked solution
=> Hadoop hit the sweet spot

Hadoop Implementation
SW
- collect data using syslog-ng (considering Scribe)
- storage: deposits into Hadoop (scribe will remove that)
HW
- 2-4 collector machines per datacenters
- hundreds of source machines
20 solr nodes

Implementation: Indexing/Querying
- indexing – uniqe processing code for schema
- querying
- “realtime”
- sharded lucene/solr instances merge-index chunk from Hadoop
- using Solr-API
- raw logs
- using Hadoop Streaming and unix grep
- Mapreduce

Implementation: Timeframe
- development – 1.5 people in 3 months
- deployments – using clouderas distribution
- roadblocks – bumped into job-size limits

Have run close to 1 million jobs on our cluster, and it has not gone down (except for other reasons such as maintenance)

Advantages – storage
- all storage in one place
Raw logs: 3 days, in HDFS
Indexes: 7 days
Archived Indexes: 6 months

Advantages – analysis
- Java Mapreduce API
- Apache Pig
- ideal for one-off queries
- Hadoop Streaming

Pig Example – whitehouse.gov mail spoofing

Advantages – Scalability, Cost, Community
- scalability – easy to add nodes
- cost – only hardware
- community – cloudera has been a benefit, deployment is trivial

Data Processing for Financial Services – Peter Krey and Sin Lee, JP Morgan Chase

Innovation & Shared Services, Firmwide Engineering & Architecture

note: certain constraints what can be shared due to regulations

JPMorgen Chase + Open Source
- QPD (AMQP) – top level apache project
- Tyger – Apache + Tomcat + Spring

Hadoop in the Enterprise – Economics Driven
- attractive: economics
- Many big lessons from Web 2.0 community
- Potential for Large Capex and Opex “Dislocation”
- reduce consumption of enterprise premium resources
- grid computing economics brought to data intensive computing
- stagnant data innovation
- Enabling & potentially disruptive platform
- many historical similarities
- java, linux, tomcat, web/internet
- minis to client/server, client/server to web, solaris to linux, ..
- Key question: what can be built on top of Hadoop?
Back to economics driven – very cost-effective

Hadoop in the Enterprise – Choice Driven
- Overuse of relational database containers
- institutional “Muscle memory” – not too much else to choose from
- increasingly large percentage of static data stored in proprietary transactional DBs
- Over-Normalized Schemas: still Makes sense with cheap compute&storage?

- Enterprise Storage “Prisoners”
- Captive to the economics & technology of “a few” vendors
- Developers need more choice
- Too much proprietary, single-source data infrastructure
- increasing need for minimal/no systems + storage admins

Hadoop in the Enterprise – Other Drivers
- Growing developer interest in “Reduced RDBMS” Data technologies
- open source, distributed, non-relational databases
- growing influence of web 2.0 technologies & thinking of enterprise
- hadoop, cassandra, hbase, hive, couchdb, hadoopDB, .. , others
- memcached for caching

FSI Industry Drivers
- Increased regularity oversight + reporting = More data needed over longer period of time
- triple data amounts from 2007 to 2009
- growing need for less expensive data repository/store
- increased need to support “one off” analysis on large data

Active POC Pipeline
- Growing stream of real projects to gauge hadoop “goodness of fit”
- broad spectrum of use cases
- driven by need to impact/dislocate OPEX+CAPEX
- looking for orders of magnitude
- evaluated on metric based performance, functional and economic measures
- avoid the “data falling on the floor phenomena”
- tools are really really important, keep tools and programming models simple

Hadoop Positiong
- Latency x Storage amount curve,

Cost comparisons
- SAN vs Hadoop HDFS cost comparison (GB/month)
- Hadoop much cheaper

Hadoop Additions and Must Haves:
- Improves SQL Front-End Tool Interoperability
- Improved Security & ACL enforcement – Kerberos Integration
- Grow Developer Programming Model Skill Sets
- Improve Relational Container Integration & Interop for Data Archival
- Management & Monitoring Tools
- Improved Developer & Debugging Tools
- Reduce Latency via integration with open source data caching
- memcached – others
- Invitation to FSI or Enterprise roundtable

Protein Alignment – Paul Brown, Booz Allen

Biological information
- Body – Cells – Chromosomes – Gene – DNA/RNA

Bioinformatics – The Pain
- too much data

So What? Querying a database of sequences for similar sequences
- one-to-many comparison
- 58000 proteins in PDB
- Protein alignment frequently used in the development of medicines
- Looking for a certain sequence across species, helps indicate function
Implementation in Hadoop
- distribute database sequence accross each node
- send query seq. inside Mapreduce (or dist.cache)
- scales well
- existing algorithms port easily

So What? Comparing sequences in bulk
- many-to-many
- DNA hybridiation (reconstruction)
Ran on AWS
Hadoop:
- if whole dataset fit into one computer
- Used distributed cache, assign each node a piece of the list
- But if the does not fit on one computer….
- pre-join all possible pairs with one MapReduce

So What? Analyzing really big sequences
- one big sequence to many small sequences
- scanning dna for structure
- population genetics
- hadoop implementatoin

Demonstration Implementation: Smith-Waterman Alignment
- one of the more computationally intensive matching and aligmnent techniques
- big matrix – (sequences to compare on row and column and calculations within)

Amazon implementation
- 250 machines
- E2
- run in 10 minutes for a single sequence. Runs in 24hrs for NxN comparison
- cost $40/hr

==> very cool 3D video of amazon ec2 nodes
- failing job due to 10% of nodes stuck on something (e.g. very long sequences)

Real-time Business Intelligence, Bradford Stephens

Topics
- Scalability and BI
- Costs and Abilities
- Search as BI

Tools: Zookeeper, Hbase, Katta (dist.search on Hadoop) and Bobo (faceted search for lucene)
- http://sourceforge.net/projects/bobo-browse/
- http://sourceforge.net/projects/katta/develop

100TB structured and unstructed data – Oracle 100M$, Hadoop and Katta 250K$

Building data cubes in real time (with faceted search)

Real-time Mapreduce on HBase
Search/BI as a platform – “google my datawarehouse”

Counting, Clustering and other data tricks, Derek Gottfried, New York Times

back in 2007 – would like to try as many EC2 instances as possible

Problem
- freeing up historical archives of NYTimes.com (1851-1922)
(in the public domain)

Currently:
- 2009 – web analytics
3 big data buckets:
1) registration/demographics
2) articles 1851-today
- a lot of metadata about each article
- unique data, extract people, places, .. to each article => high precision search
3) usage data/web logs
- biggest piece – piles up

How do we merge the 3 datasets?

Using EC2 – 20 machines
Hadoop 0.20.0
12 TB of data
Straight MR in Java
(mostly java + postprocessing in python)

combining weblog data with demographic data, e.g. twitter clicks backs by age group


Do you need help with Hadoop/Mapreduce?
A good start could be to read this book, or contact Atbrox if you need help with development or parallelization of algorithms for Hadoop/Mapreduce – info@atbrox.com. See our posting for an example parallelizing and implementing a machine learning algorithm for Hadoop/Mapreduce

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Shout it
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)
Tagged with:
preload preload preload